Help 99

Help 99

Help 99

Using Visual Basic and Embedded Display Controls
to Create a Wizard

by

Don Lammers

Presented by

Help University

Why

The HP CD-DVD Toolbox was conceived as part of a program to move troubleshooting closer to the user and ultimately away from the Customer Care centers. It's main goals were:

· Increase customer satisfaction. Faster problem resolution with less user effort will increase customer satisfaction. Put the troubleshooting as close to the user as you can.

· Accommodate less knowledgeable users. Put more information in the user's hard disk, then on the Web, so that less knowledgeable users can still successfully install and use the product with minimum frustration.

· Decrease pressure on call centers. Call centers cannot keep up with hiring and training requirements of a linear projection for call volume. Projections at the time showed a doubling of call volume from a doubling of units sold, all in a period of 18-24 months.

· Maintain or decrease repair cost as a percentage of unit price. Repair cost per unit must go down to maintain margins while unit price is falling. A repair cost representing 3% of a $500 purchase represents 6% of a $250 purchase.

Initial Requirements

· Troubleshoot in tiers. First level defense is the Toolbox. If the toolbox fails, it searches the Web for answers. If that fails, the user is given the Customer Care Center phone number. Always advance the user to the next level of troubleshooting as soon as it's apparent that this level has failed. This hopefully gets them to the answers and fixes as quickly as possible.

· Log actions and results and provide a way to get the log to the Customer Care Center to minimize the number of times a customer has to repeat descriptions and procedures.

· Update Toolbox quickly with little or no impact on code (separation of authoring and code).

· Let the author control look and feel of topic area. This requires a rich authoring environment with at least some decent editors and styles (programming tools do not provide such an environment).

· Allow Toolbox review by people who don't have it installed, and they must be able to review all of the branches, including branches based on the operating system and drives installed.

· Allow Toolbox to query and command hardware and the system and be able to branch as a result.

· Allow author to control toolbox functionality. This requires a scripting language and a reference for the author.

· Consolidate core diagnostic code, so multiple programs querying the hardware will get the same results. The toolbox, the installer, and a simple diagnostics shell should share the same core DLL.

· Incorporate Toolbox into the standard software test cycle and Bug list.

· Provide testers and reviewers with a flow chart so they know how the Toolbox should function.

· Allow updates from the Web, preferably without the need of user intervention.

· Phase functionality in over two years.

· Provide an install for the Toolbox for easy inclusion in the master installation and to let us post updates easily on the web.

Initial Design

Initial design work identified four basic architectures that seemed to be able to accommodate the initial requirements, and which we knew were feasible.

	Shell (VB or C++) with embedded HTML using the WebBrowser control.

· 2-way communication between shell and display engine.

· Controls can be embedded into the content pages for user feedback beyond simple jumps.

· Can contain dynamic content.

· Requires Internet Explorer.
	
[image: image12.png]

	Shell (VB or C++) with embedded MediaView control.

· 2-way communication between shell and display engine.

· Can't do embedded windows (and thus can't do option buttons), or at least I could never make it work.

· Can contain static content only.
	
[image: image2.wmf]MediaView

FTP

Shell

Diagnostics

	WinHelp with function DLL and separate FTP module (probably in VB)

· 2-way communication between WinHelp and DLL.

· Can do embedded controls but I would have to write the code.

· Can contain static content only.

· Limited control over look and feel.
	
[image: image3.wmf]WinHelp

FTP

Diagnostics

DLL

	Shell (VB or C++) with DLL that keeps Help looking like it's embedded.

· 2-way communication via the DLL between the Shell and WinHelp

· Can do embedded controls but I would have to write the code.

· Can have static content only.

· Insuring that the WinHelp window always stayed with the shell is problematic.
	
[image: image4.wmf]FTP

Shell

WinHelp

Diagnostics

DLL

Initial Design Decision

Embedded HTML Help was chosen as the most robust solution.

· HTML is a currently supported technology. Help is what it is but is not going to be updated.

· The number of third party controls and functions available for HTML have already exceed those available for Help.

· Editing options are greater with HTML.

· Graphics are better handled with HTML.

· Controls, including drop-down lists, option buttons, and check boxes can be embedded in native HTML content.

· The WebBrowser control can display HTML that includes dynamic content.

· We were promised by the main application vendor that Internet Explorer would be on the target systems.

Tool Choices

· Visual Basic 5

· DreamWeaver

· Corel PhotoPaint

· Wise InstallMaster

· Word

· Notepad

Why Not Web Based?

The most frequent question from other divisions was "Why don't you put this whole thing on the web?"

· The minimum system requirements for the product do not include web access.

· The web is very slow for customers on modems. The people who wanted this on the web were mostly people who only use the web from work and think the rest of the world also has high speed access.

· Hardware needs to be queried. This can be done from the web, but again there are reliability issues.

· Customer may have to reboot during the process. Adding web access into the mix (except, once again, on a system with full time high speed access) will slow down the process. Not to mention what happens if you can't re-connect after rebooting. Remember, part of the goal was to speed up the process.

Backtracking

Embedded HTML Help design had to be scrapped four months into development in favor of embedded MediaView design.

· Main application vendor could not figure out how to do a silent IE4 installation. Neither could I. MS had finally admitted silent installations could not be done with their instructions.

· RoboHelp had just released a truly silent install which worked in English, but nobody at RoboHelp could tell me how it would (or could) handle other languages.

· The decision point for changes was about 4 weeks prior to IE5 release, which Microsoft promised could do a silent installation. On the other hand, they had promised this with IE4 and not delivered.

· HP did not want a full IE installation as a backup option, though we did know how to do this.

What Was Involved in the Switchover

· Converted multiple HTML files to MediaView RTF format. Unfortunately, none of the WinHelp HATs can do this, so this was largely manual.

· Converted the URL decoder, which sorted URLs from embedded commands, to a MediaView jump decoder. This was very straightforward, since all I had to do was change the initial string decoding to extract the commands. Taking the commands from URL strings in the HTML source files and putting them in topic entry macros was far more time consuming than the code changes. Since the actual commands were separate from the jump decoding already (or not yet written), once the jump decoding code was modified the functions worked just as they had before the change.

· Since we were not doing HTML, DreamWeaver was dropped. All editing was done in Word.

The Current "Suite"

Taking into account the requirements from various departments, and the fact that we could no longer guarantee that IE would be in the user's system, the following "suite" of programs and files was created:

· Toolbox executable and ancillary files (toolbox.exe, drives.dat, toolbox.dat, strings.eng, toolbox.hlp, toolbox.m14)

· Test mode settings executable and Help (testmode.exe, testmode.hlp, testMode.ini). This program lets you set the values in testmode.ini. The Toolbox uses settings in this file (if it is present on the user's system to simulate certain conditions so that you can run through the logic of the toolbox without installing it on every concievable type of system. All final testing was still done on multiple target systems but this saved a lot of development time.

· Setup (setup.exe) which will automatically place the troubleshooter in the appropriate folder under the HP CD-Writer installation folder, or abort if the CD-Writer software has not been installed.

· Setup initialization file (setup.ini). This file, when present in the same folder as the setup program, will let the user install the Toolbox on a system without a supported HP drive.

· Flow chart (Toolbox Flow Chart.doc), which shows the logic and allows review of text by people without the troubleshooter installed on their system, or without an HP drive installed in their system.

· Scripting reference (Toolbox Syntax.doc)

· Revision list (Toolbox Revisions.doc)

[image: image1.wmf]HTML

FTP

Shell

Diagnostics

[image: image5.png][image: image6.png][image: image7.png][image: image8.png][image: image9.png][image: image10.png][image: image11.png]

Challenges for the Project

· This was the first commercially distributed installation I have done, and it had to mesh with a master installation.

· I had never worked with web access from a program—only from HTML web pages. This part would have been much easier if we had been able to use the WebBrowser control rather than MediaView.

· The Toolbox would only be in English, but would ship with a multi-language program. It wasn't until installation integration that we realized that having an English only sub-install package appear in the middle of different language install was hardly ideal. The installation (and subsequently the uninstallation) was made as silent as Wise InstallMaster would allow.

· DLL conflicts with versions of the Microsoft OLE DLLs. I eventually had to create a clean Windows 98 gold install on a test machine, with only VB5 installed, to ensure that I got the oldest DLLs compatible with the code, in addition to testing with the newer DLLs. This minimized reboots during installation, but forced some code rewriting due to bugs in older versions of the DLLs.

· The bug tracking loop was open ended for the first half of the project. Bugs were assigned to me and I got an e-mail but had no way to clear them from the system because I did not have access through the firewall to the bug tracking software. Eventually we got a single contact in the test department with responsibility for taking my e-mailed fix reports and logging them into the system.

· Special documents displayed outside the shell needed a viewer. In the original plan these would be opened in the full browser window. When the browser was no longer guaranteed we decided to use an HTML 2.0 display engine that came with the FTP control we were using. Printing problems were discovered with this control (at the last minute, of course) and these "external display" documents were converted quickly to WinHelp. WinHelp was a familiar tool with few surprises, and about the only major change I would trust the day before Release Candidate 1.

Things We Didn't Manage

· Full consistency across all software. The diagnostics DLL is currently called by the troubleshooter and the diagnostics program. The installer currently has completely separate code. In addition, many functions that should be common (like getting system information) are separately coded in the diagnostics DLL, troubleshooter, and installer. These should eventually be migrated to a second DLL that handles common functions.

· Auto Update. It would not work across a firewall as designed, so it was pulled. A large number of the target customer would be business users, and therefore probably behind a firewall. You can get updates from the web, but these are not yet automatically handled by the Toolbox. The user must go to the web site, download the update, and run the setup.

· Direct link to appropriate CD-Writer web pages. The original plan was to have the user make several of the choices (model, section, etc.) before logging on to the net, to save time. Unfortunately the HP web site was undergoing a complete overhaul, and nobody would guarantee that a given page would remain at the same URL. The CD-Writer pages changed location twice during development. We currently link to the main CD-Writer page, so the user must still choose their model number and section (downloads, documents, specifications, etc.) after linking to the HP site.

· Automatic log transfer. Logging has been implemented, but automatic forwarding to the Customer Care Center is not yet available.

The Next Step

Plans for the next version include:

· Converting back to HTML. We are now guaranteed that Internet Explorer will be on the system.

· Actually getting the auto update working.

· A lot more auto detection of system parameters.

· Undo for file renaming.

· Externalize the UI style sheet. Content styles are currently determined by the author but font size and type for UI elements are determined in code.

· Provide a better way for users to determine which of two identical drives are selected in the Toolbox.

Demo

You can download a demo from www.smountain.com in the WinHelp Conferences section.

Ask Drive

T

Yes

No

Bad OS

R

Valid OS?

No

Yes

Selected from found list?

Yes

No

Drive exists on system?

AskTest

P

Yes

No

HP Drive Found?

Drive Not Found

B

Figure 2: Sample Flow Chart Page (90% of Actual Size)

Figure 1: Sample topics

Opening topic – a Visual Basic form

Drive Select topic – a Visual Basic form set in the wizard framework

Wizard navigation bar – a VB MDI form toolbar

Wizard heading bar – �a VB MDI form toolbar

Topic – a VB MDI Child form

Standard topic with jumps – MediaView control set in the wizard framework

Standard topic with no jumps – MediaView control set in the wizard framework

Topic – MediaView control embedded in a VB MDI Child form

Special topics implemented in WinHelp

Using Visual Basic and Embedded Display Controls
to Create a Wizard

Don Lammers

Page 4

Using Visual Basic and Embedded Display Controls
to Create a Wizard

Don Lammers

Page 5

_999878682.unknown

_999879600.unknown

_999878697.unknown

_999878601.unknown

